	(Residential Autonomous College affiliated to University of Calcutta)					
	FIRST YEAR [BATCH 2017-20]					
	B.A./B.Sc. SECOND SEMESTER (January – June) 2018					
	Mid-Semester Examination, March 2018					
Date	: 14/03/2018 COMPUTER SCIENCE (Honours)	5 11 1 5 5 5				
lime	Paper: II am - 1 pm Paper: II	Full Marks : 50				
[Use a separate Answer Book <u>for each group</u>]						
	$\frac{\text{Group}-A}{(1-\alpha)^2}$	F.C				
	(Answer <u>any five</u> questions)	[5×5]				
1.	Write the function to add and multiply two polynomials using singly linked list.	$[2 \cdot 5 + 2 \cdot 5]$				
2.	How do you perform Queue's enqueue and dequeue operations in constant amount of time using a					
	list. Given a non circular list, show that the list can be used as a stack by writing functions to add and					
	elete elements. [2+3]					
3.	What do you mean by self referential structure? Write a function to split a circular linked	ar linked list from a				
	specified position to make it two singly linked lists.	[2+3]				
4.	Write a function to implement following operations :	ing operations : $[2\cdot 5+2\cdot 5]$				
	a) Reverse a doubly linked list.					
	b) Merge two sorted singly linked lists.					
5.	What is stack as ADT? How do you analyze the performance of insertion and deletion of	deletion operation in				
	circular queue operation? What is asymptotic notation?	[2+1+2]				
6.	Write down the advantages of circular queue? Write the function to implement a priority q	ueue using				
	singly linked list for performing basic operations in such a way so that dequeue operation p_{ab}	should be				
_	performed in O(1) amount of time.	[1+4]				
7.	Write a function to implement following operations :	[2.5+2.5]				
	 a) Split a doubly linked list in a given position. b) Count number of nodes in a single linked list having even substantiation. 					
	b) Count number of nodes in a singly linked list having even value.					
<u>Group – B</u>						
	(Answer <u>any five</u> questions)	[5×5]				

8.	a) b)	State Lagrange's Interpolation formula.Prove that the sum of Lagrangian functions is unity.			
9.	a)	Solve graphical Maximize z = Subject to	lly the following L.P.P. $3x_1 + 2x_2$ $x_1 - x_2 \le 1$ $x_1 + x_2 \ge 3$	[2.5]	

 $\mathbf{x}_1, \mathbf{x}_2 \ge 0$

b) Food X contains 5 units of vitamin A and 6 units of vitamin B per gram and costs 20 paise/gm.
 Food Y contains 8 units of vitamin A and 10 units of vitamin B per gram and costs 30 paise/gm.

The daily requirements of A and B are at least 80 and 100 units respectively. Formulate this as a linear programming problem to minimize the cost. [2.5]

10. a) Prove that
$$\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$$
, interval of differencing being h. [2.5]

- b) Show that the iterative process, method of bisection converges for finding the real root of an algebraic or transcendental equation. [2.5]
- Solve that following system of equations by Gauss-Seidel iteration method, correct upto 2-significant figures.

$$2x_1 + x_2 + 5x_3 = 13$$
$$3x_1 + x_2 + x_3 = 7$$
$$x_1 + 4x_2 + x_3 = 9 \cdot 4$$

- 12. Reduce the following linear programming problem in the standard maximization form : [5]
 - Minimize $z = 3x_1 4x_2 + 7x_3$
 - Subject to $x_1 + x_2 + 7x_3 \le 50$

$$5x_1 + 3x_2 = 20$$

$$|3x_2 + 4x_3| \le 100$$

 $x_1, x_2 \ge 0$ and x_3 is unrestricted in sign.

13. a) What do you mean by interpolation and extrapolation? [2]
b) Using suitable interpolation formula, find the value of f(2.5) from the following table : x : 2 3 4 5

$$f(x)$$
 : 14.5 16.3 17.5 18.0 [3]

- 14. a) Write down the geometrical interpretation of Regula-Falsi method. [3]
 - b) Write down the geometrical interpretation of Trapezoidal rule to evaluate the value of finite integration. [2]

_____× _____